C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNASec
نویسندگان
چکیده
O-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNA(Sec) to produce O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) that is then converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with AMPPNP. This study presents the crystal structure (at 2.4-Å resolution) of MjPSTK complexed with an anticodon-stem/loop truncated tRNA(Sec) (Mj*tRNA(Sec)), a good enzyme substrate. Mj*tRNA(Sec) is bound between the enzyme's C-terminal domain (CTD) and N-terminal kinase domain (NTD) that are connected by a flexible 11 amino acid linker. Upon Mj*tRNA(Sec) recognition the CTD undergoes a 62-Å movement to allow proper binding of the 7-bp D-stem. This large reorganization of the PSTK quaternary structure likely provides a means by which the unique tRNA(Sec) species can be accurately recognized with high affinity by the translation machinery. However, while the NTD recognizes the tRNA acceptor helix, shortened versions of MjPSTK (representing only 60% of the original size, in which the entire CTD, linker loop and an adjacent NTD helix are missing) are still active in vivo and in vitro, albeit with reduced activity compared to the full-length enzyme.
منابع مشابه
Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase
Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNA(Sec) by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNA(Sec) by O-phosphoseryl-tRNA(Sec) kinase (PSTK), and conversion of O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNA(Sec). Although SerRS recognizes both tRNA(Sec) and tRNA(Ser) species, ...
متن کاملIdentified Hybrid tRNA Structure Genes in Archaeal Genome
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...
متن کاملIdentification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
In 1970, a kinase activity that phosphorylated a minor species of seryl-tRNA to form phosphoseryl-tRNA was found in rooster liver [Maenpaa, P. H. & Bernfield, M. R. (1970) Proc. Natl. Acad. Sci. USA 67, 688-695], and a minor seryl-tRNA that decoded the nonsense UGA was detected in bovine liver. The phosphoseryl-tRNA and the minor UGA-decoding seryl-tRNA were subsequently identified as selenocys...
متن کاملFrom one amino acid to another: tRNA-dependent amino acid biosynthesis
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cog...
متن کاملCharacterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Selenocysteine (Sec)-decoding archaea and eukaryotes employ a unique route of Sec-tRNA(Sec) synthesis in which O-phosphoseryl-tRNA(Sec) kinase (PSTK) phosphorylates Ser-tRNA(Sec) to produce the O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) substrate that Sep-tRNA:Sec-tRNA synthase (SepSecS) converts to Sec-tRNA(Sec). This study presents a biochemical characterization of Methanocaldococcus jannaschii...
متن کامل